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In  a previous study using finite-amplitude techniques (Maslowe 1977), a strong 
instability mechanism was discovered that takes effect at the Richardson numbers 
consistent with turbulence observations in the atmosphere and oceans. The 
mechanism involves second harmonic resonance of two neutral or nearly neutral 
modes at a Richardson number of roughly 0.22. In the present investigation, the 
nonlinear Boussinesq equations have been solved numerically to further explore this 
instability and to assess the limits of validity of the theory. Qualitative agreement 
between the theory and numerical simulations was satisfactory as the most 
significant numerical results were predicted by the theory. In particular, the wave 
interaction leads to impressive instabilities a t  Richardson numbers large enough that 
a single linearly unstable wave would amplify only weakly. At a Richardson number 
of 0.14, for example, the saturation amplitude of the long wave in the two-wave 
interacting case was 15 times as large as the amplitude of the linearly most unstable 
wave (evolving by itself) a t  the same Richardson number. 

1. Introduction 
The stability theory of stratified shear flows has important geophysical 

applications as well as intriguing mathematical complexities. It is well known that 
there exist regions both in the atmosphere (the tropopause) and the oceans 
(thermoclines) where substantial shears are accompanied by stable density 
stratification. These mixing layers are often sites of considerable turbulence which is 
widely believed to be the outcome of shear flow instability. The term ‘Kelvin- 
Helmholtz instability ’ is often employed, somewhat loosely, to describe this 
phenomenon which, according to inviscid linear stability theory, can occur only if 
J (y) ,  the local Richardson number, is somewhere less than t (see, e.g. Drazin & Reid 
1981). Laboratory studies tend to support the linear stability criterion, but have 
been conducted a t  Reynolds numbers much smaller than those pertinent to the 
atmosphere. Atmospheric observations of large amplitude waves, on the other hand, 
have been reported in which J,, the minimum value of J ,  is between and 1 (see, e.g. 
Metcalf & Atlas 1973). 

Kelvin-Helmholtz billows can achieve substantial amplitudes (on the order of 
1 km) and their observation by sensitive radars has stimulated a considerable interest 
in the subject. Concurrent measurements of the Richardson number (which, 
unfortunately, cannot be determined precisely) indicate that the regime 0.15 < J ,  d 
0.30 frequently coincides with such observations, and this has often been taken as a 
substantiation of linear theory. However, upon further reflection, the situation is not 

t Present address : Computer Modelling Group, Calgary, Alberta T2L 2A6, Canada. 
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so clear-cut because the linear growth rate of an unstable perturbation is quite small 
even a t  J ,  = 0.15 and seems incompatible with the spectacular billows reported, for 
example, in Browning (1971) and Hardy, Reed & Mather (1973). Moreover, viscosity 
and non-parallel effects reduce the linear growth rates from their inviscid values. 

Given these circumstances, it  is natural to search for nonlinear mechanisms that 
enhance the growth rates of unstable waves and/or suggest ways that instability can 
occur in flows that are stable on a linear basis. This search can be accomplished either 
by perturbation methods or by numerical solution of the full nonlinear Boussinesq 
equations. The numerical results presented here were obtained as the outcome of an 
attack on both fronts ; the finite-amplitude theory provided guidance in the choice 
of initial perturbations as well as a framework in which to interpret the results. 

The finite-amplitude study most pertinent to the present discussion was outlined 
in Maslowe (1977). Following an earlier suggestion by Kelly (1968), a perturbation 
was considered consisting of two resonantly interacting neutral modes in a mixing 
layer with velocity and density profiles u = tanh y and p = exp (-/3 tanh y). It was 
found that the amplitudes of the two modes evolve according to the equations 

where 7 =et  is a slow timescale, E is an amplitude parameter and * denotes the 
complex conjugate. For the specific case considered, y1 and y2 were found to be each 
real and of the same sign, from which it is shown below that both waves can amplify 
by extracting energy from the mean flow. Because the amplification takes place on 
a faster timescale than in the weakly nonlinear theory for a single mode (et us e2t),  
this instability mechanism can be quite powerful, as suggested earlier by Kelly 
(1968). Further support for this conclusion is provided from numerical computations 
demonstrating that y1 and yz  can be quite large. The latter result is undoubtedly due 
to the presence of a critical layer, its role having been underlined in the boundary- 
layer case in a recent monograph by Craik (1985). 

It is informative to rewrite (1.1) in terms of the real amplitude and phase denoted 
a and 4, respectively, where A = he-’$ and A* = hei$. Equations (1.1) become 

da,/dT = !jyl a, a2 cos 8, da2/dr = !jy2 a: cos 19, (1.2a, b )  

d$,/dr = - !jyl a2 sin 8, a2 d+,/dr = !jy2 a: sin 0, ( 1.2 c, a) 
where, in studies of second harmonic resonance, I9 = 24, - $2 is termed the relative 
phase. 

From ( 1 . 2 ~ )  and (1.2b), one can derive the energy integral 

where E is a constant. This important result shows that both modes can amplify a t  
the same time by extracting energy from the mean flow (recall that Yl/yz is positive). 
An integral involving the relative phase can also be derived from (1.2u)-( 1.2d), 
namely a; a2 sin I9 = L,  

and, as noted by a referee, this can be combined with (1.212) to yield 

(1.4) 

(1.5) 
Finally, the relationships (1.2) and (1.3) can be used to derive the following equation 

duf1d.r = y1 L cot 0. 

for a; 
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t: E<O 

- ; E  0 a: 

FIGURE 1. Phase plane trajectories for the long-wave amplitude. 

A phase plane study of (1.6) shows that a: will generally become unbounded in 
time. This is true whether E is positive or negative, because the solution trajectories 
for which a, is real all lie to the right of a saddle point which is located at the origin 
when E < 0 or a t  a: = iE if E > 0;  the sketch in figure 1 corresponds with the latter 
case. The importance of the relative phase evident from (1.5) can also be seen clearly 
in the numerical calculations presented in figure 16 of Patnaik, Sherman & Corcos 
(1976). Their results were obtained by solving the Boussinesq equations with a 
disturbance consisting of a long and short wave having the wavenumbers a: = 0.215 
and a: = 0.43. Other parameters were J, = 0.07, Re = 50 and Pr  = 0.72, where Re 
and Pr denote the Reynolds and Prandtl numbers, respectively. Two cases were run, 
corresponding to  different values of 8 ;  the nature of the interaction was observed to 
be quite different in the two cases, although the long wave proved to be dominant 
each time. 

Equations (1.1)-( 1.6) also arise in the context of capillary-gravity waves, where 
experiments reported by McGoldrick (1970) strongly support the conclusions of the 
theory. The author states (p. 264) that ‘the interaction process is so dramatic that 
it can be seen by eye ’. This must be due not only to the relatively fast timescale, but 
also to the fact that the two-wave resonance requires only the longer wave to get 
started ; the second harmonic is generated automatically by weak nonlinear effects. 
For capillary-gravity waves the process is one of energy-sharing so that yJy2 < O t .  
Hence, there is reason to expect even more dramatic results in the case where shear 
is available as an energy source for both waves. 

There is no doubt that the resonance described above is related to the vortex- 
pairing process observed to occur in homogeneous mixing layers. Numerical 

t When an external stream is present, Nayfeh (1973) has shown that for a certain range of 
velocities spatial amplification of both waves is possible. This appears to be a group velocity effect 
related only indirectly to the instability studied here. 
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simulations by Riley & Metcalfe (1980), for example, illustrate convincingly that the 
two-wave perturbation describes well the sequence of events observed experi- 
mentally. Their results also demonstrate the importance of the relative phase; in 
fact, i t  is only when 101 = in that pairing fails to occur. It would be claiming too 
much, however, to say that the theory outlined above is directly relevant to 
transition in homogenous free shear layers, because the wavenumbers involved are 
too far away from the neutral value (e.g. a, = 0.895 when Re = 50). The application 
to stratified shear layers is more promising because linear growth rates are smaller, 
and the range of unstable wave numbers decreases with increasing Jo, vanishing 
entirely a t  J, = a. By adding linear amplification terms to (1 .1) ,  a meaningful portion 
of the (Jo,a)-space is accessible to the perturbation theory. 

Given the restrictions of the theory to small amplitudes and to wavenumbers that 
are not necessarily the fastest growing, the present numerical investigation was 
undertaken to extend the earlier results and answer questions that were raised by 
both finite-amplitude theories and previous numerical studies. For example, one may 
wonder if it  is of any interest to examine the interaction of neutral modes, as 
discussed above, when a band of linearly unstable waves exists a t  the same 
Richardson number Z Section 3 deals with two-wave interaction cases and results 
presented there show, in fact, that  the shorter of the two neutral modes can grow a t  
a rate roughly 5 times that of the linearly most unstable wave. A second question 
pursued in the same section pertains to the effect of stratification on the vortex- 
pairing process, i.e. what qualitative features of the interaction change as J o  is 
increased and what is the maximum value for which pairing can occur ? 

Although this paper does not provide definitive answers to these questions, there 
are some surprising results clearly indicating that two-wave interactions are 
significant a t  moderate values of the Richardson number. They may partially 
explain, for example, the variability in observed wavelengths reported by 
meteorologists and the tendency noted by Greene & Hooke (1979) toward longer 
waves vis-chis the most amplified wave of linear theory. Further discussion of our 
results is deferred until 94 so that the governing equations can be presented, followed 
by a description of the numerical methods used to solve them. 

2. Formulation and numerical procedures 

motion can be written 
After employing the Boussinesq approximation, the non-dimensional equations of 

1 
(2.1) 

JO 

P Re 
L+ q J x -  Y',Cu+-Px = -V2L 

and 
1 

P t + ~ , P x - Y j , P , = - V 2 P ,  Re Pr 

where the velocity components are related to the stream function by ( u , v )  = (Yv, 
- Y x ) ,  the vorticity 5 = -V2Y and p is the density. The dimensionless parameters 
which emerge are the Reynolds and Prandtl numbers, Re and Pr, as well as J,, the 
minimum value of the local Richardson number J(y) ,  whereas 

P = -d(logP)/dy, 

evaluated a t  y = 0 which, for our model, is also the level a t  which J ( y )  = J,. These 
scalings are standard in shear-layer stability investigations and correspond, for 
example, with the sketch in figure 1 of Patnaik et al. 
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Equations (2 .1 )  and (2 .2)  were solved in the finite rectangular domain 0 < x: < A,  
- 3h/27c < y < 3h/27c, where h is the wavelength of the disturbance and the solution 
is periodic in x. For the wave interaction cases, h is the wavelength of the longer of the 
two waves. The conditions imposed along the horizontal computational boundaries 
located a t  y = & 3h/2n  approximated exponential decay of the perturbation and 
tests were made to ensure that the results were not sensitive to the boundary 
location. 

As the undisturbed velocity and density profiles in our study, we employed the 
Holmboe model of a mixing layer, namely, u = tanh y and p = exp (-/3 tanhy). 
Although this is not an exact solution of the Boussinesq equations, it is known to 
approximate experimentally measured profiles accurately as found, for example, by 
Scotti & Corcos (1972) and Davey & Roshko (1972) .  The major advantage of this 
model is that the inviscid neutral solution is known in closed-form ; moreover, 
numerical codes were available to us for solving the linear diffusive stability problem, 
namely, those used by Maslowe & Thompson (1971),  and these codes were employed 
to provide initial conditions in the numerical simulations. Because inviscid neutral 
modes are singular, it was essential that dissipative effects be included. 

The governing partial differential equations were solved using the pseudospectral 
method as described, for example, by Gottlieb & Orszag (1977) .  The use of this 
method is now so widespread in geophysical and engineering applications that only 
a sketch of our particular implementation seems necessary here. Briefly, the vorticity 
and density in (2 .1 )  and (2 .2 )  were represented by the series 

and (2.4) 

where a = x/L,  and p = n/L, with L, and L, being half the domain size in the 
horizontal and vertical directions, respectively. By separating 5 and p into periodic 
and non-periodic components in this way, Gibbs phenomenon which adversely 
affects the convergence of the series is kept to a minimum. 

Pseudospectral (as opposed to spectral) methods employ collocation to  determine 
the coefficients of the series in (2 .3 )  and ( 2 . 4 ) .  We denote the number of collocation 
points in the horizontal by nl and the number in the vertical by n2.  The spatial 
derivatives in (2 .1 )  and (2 .2 )  were calculated using term-by-term differentiation in 
Fourier space and then transformed into physical space where nonlinear terms were 
calculated pointwise. Time differencing was accomplished by employing the explicit 
second-order Adams-Bashforth scheme with the first few (small) steps computed 
using Euler’s method. It was found that the Adams-Bashforth method was more 
stable and somewhat faster than the more widely used leapfrog differencing. 

As noted earlier, weakly nonlinear theories provide a framework within which the 
results of numerical simulations can be most usefully interpreted. This requires that 
amplitudes in the numerical study be defined in such a way that identification is 
feasible with the quantities Ai(7) appearing in the theory. For simplicity, let us first 
consider a perturbation consisting of a single mode. In  linear theory, the stream 
function can be written 

p = P(Y) + C C bmn exp {i(max+ npy)> ,  
m n  

V x ,  y, t )  = .ii(s) ds + e{&) $(!I) + *>, (2.5) 

where e is a dimensionless amplitude parameter related to the disturbance energy as 
follows. 

s 
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In accordance with (2.5), the perturbation kinetic energy to O(e2)  is given by 

The integral in (2.6) is equal to in the case of the inviscid, unstratified neutral mode 
q5 = sech y, a = 1 .  Consistent with this normalization which we employed for q5 in 
general, A(0) was set equal to (g);; in the two-mode runs, this convention was used 
for the fundamental mode, with the amplitude of the subharmonic varying in 
different cases. 

Representing now the eigenfunction by a Fourier series, we have 

iN2-1 

$(y) = C p n  ein@g. 
n=- iN2 

In  our numerical code, the counterpart of (2.5) is written 

iN1-1 iN2-1 

Y = ti(s)ds+ G G dm,(t) exp{i(max+npy)), (2.8) s m=--'N1 n=-LN2 

which, by comparison with (2.7), yields 

iN2-1 iNl-1 

= c d,,(t)p:/ r, IP,I2. (2.9) 
n=--?N2 n=-$N2 

This amplitude differs from the A(t) of weakly nonlinear stability theories, where A ( t )  
is the first term in a series in powers of E (see e.g. Stuart 1971). However, for a single 
mode the next term of the series is zero and so we may expect to be able to make a 
reasonable comparison with linear theory for small times as a check on accuracy. 
This is not as easily accomplished with finite-difference methods, as discussed by 
Patnaik et al. because there the kinetic energy, which is employed as a measure of 
amplification, includes all the higher harmonics in x. 

We have made such comparisons and find, for example, a deviation of only about 
1 %  from the aci of linear theory after 8 dimensionless time units for the fastest 
growing mode a t  the following parametric values: eJo = 0.07, a = 0.45, Re = 200, 
Pr = 0.72 and E = 0.01 to 0.05. The agreement was not as close for neutral modes, 
but was still satisfactory. For details of these comparisons and further discussion of 
the numerical procedures employed see Collins (1982). One further remark, however, 
about pseudospectral methods is that aliasing errors inherent in the method are 
evident if the energy spectrum is graphed as a function of wavenumber. A marked 
increase in the high wavenumbers (small scales) occurs when numerical instability is 
present, in which case the number of modes must be increased and/or the timestep 
decreased. This monitoring procedure was followed in all cases. 

3. Numerical results 
We have run a number of single mode simulations at Reynolds numbers as high 

as 600 in order to compare the results with various asymptotic theories. Brown, 
Rosen & Maslowe (1981), for example, in a weakly nonlinear analysis of the Hralmboe 
mixing layer found a strong dependence on Prandtl number of the Landau constant. 
A more thorough investigation by Churilov & Shukhman (1987) produced the same 
trend and confirmed, in particular, that the Landau constant is negative (nonlinear 
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effects are stabilizing) when Pr < 1. Surprisingly, a strong variation with Pr was not 
observed in our simulations (some possible explanations are proposed in $4) and, 
consequently, the matter was not pursued. 

More satisfactory comparisons were achieved, however, with the nonlinear critical- 
layer theory, where the numerically computed flow structure near saturation bears 
a strong resemblance to the theoretical model, including the presence of the thin 
diffusive ‘braids ’ predicted by the theory. A typical pattern for the isopycnic 
(constant-density) contours in the critical layer is illustrated in figure 5 of the recent 
survey article by Maslowe (1986); this case corresponds to the parameter values 
J ,  = 0.10, Re = 200, Pr = 0.72 and a = 0.44. 

According to the nonlinear critical-layer analysis for stratified flows, all harmonics 
of the fundamental disturbance mode are the same order of magnitude in the critical 
layer. A consequence for numerical studies, borne out by our experience, is that many 
modes must be employed to resolve properly the complex flow occurring a t  high 
Reynolds numbers, especially when diffusive layers are present. As discussed by 
Curry et al. (1984), the use of an insufficient number of modes in such circumstances 
will produce spurious chaos. For the highest Reynolds numbers we considered, a 
128 x 128 grid was required. 

For the two-mode interactions, which are the focal point of this article, it  was 
observed that the dynamics are essentially inviscid a t  Re = 200 so that value, along 
with Pr = 0.72, was employed in the computations whose results are presented 
below. It was found that the minimum resolution requirement was 32 Fourier modes 
in x and 64 in y with a timestep of 0.0625. No dramatic changes with Reynolds 
number were noted for Re > 200 and so we conclude that the dominant parameters 
governing the interaction are the Richardson number, wavenumber, amplitude 
ratios and the relative phase. 

3.1. Neutral modes 
Figure 2 indicates the stability on a linear basis of the individual modes involved in 
our computations by noting their position relative to the neutral curve and to the 
locus of most amplified wavenumbers. Due to the symmetry of Hdmboe’s flow, c, = 0 
in all cases and the resonance condition therefore is simply that the wavenumbers be 
in a 2 :  1 ratio. 

The case corresponding exactly with the theory outlined earlier, i.e. equations 
(1.1)-(1.5), coincides with the Richardson number J ,  = 0.217 when Re = 200. 
Although the instability in this case did not prove to be as substantial as suggested 
by the finite-amplitude theory, the results were none the less interesting. In  
particular, the initial growth rate for the short wave (for which a = 0.642) 
considerably exceeded that of the linearly most unstable wave (whose mi = 0.025), 
as shown in figure 3. On the other hand, the increase in saturation amplitude was less 
dramatic because the linearly most amplified wave grows until t = 24.5, whereas the 
resonant neutral mode stops growing a t  t = 5.6; its amplitude a t  that point is 18% 
larger than the maximum achieved by the linearly most unstable wave. 

The initial conditions leading to relatively rapid growth of the short wave included 
setting a,(O) = 30a,(0). In  such a case, the process might be described as linear 
instability of an initially periodic flow consisting of the mixing layer and the longer 
wave because the amplitude of the long wave remained relatively constant during 
the interaction. This situation is reminiscent of Kelly’s (1967) analysis of 
subharmonic instability in a homogeneous mixing layer with one important 
difference - in the unstratified case, it  is the long wave which amplifies and the short 
one is taken to be periodic. 



472 D .  A .  Collins and S .  A .  Maslowe 

0.25 

0.20 

0.15 

0.10 

0.05 

0.2 0.4 0.6 0.8 1 .o 
U 

0 

FIGURE 2. Linear stability boundary for Hdmboe’s flow and location of pairs of resonantly 
interacting modes discussed in $3.1 ( A ,  B) ,  $3.2 (C, D )  and $4 ( E , F ) .  
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FIGURE 3. Amplitude evolution of short wave az ( t )  in the case of two interacting neutral modes 
and dependence on initial relative phase 8 ;  J ,  = 0.217, Re = 200, Pr = 0.72, B = 0.004, a1 = 0.321, 
a2 = 0.642 and a,(O) = 30a2(0), except in the cases a,@) = 0 and a, = 0 (long wave absent). 

Our failure to find initial conditions leading to amplification of the long wave a t  
J ,  = 0.217 is surprising in light of the known results for homogeneous mixing layers 
(see Ho & Huerre 1984 for a review). Moreover, the pairing simulations of Patnaik 
et al. at J ,  = 0.07 illustrate that  a slight stratification does not eliminate this process. 
On the other hand, our results do make i t  clear that  notions about ‘vortex pairing’ 
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must be considerably altered when the stratification is moderate, a point that will be 
taken up again in $3.3. First, however, some brief further observations are made 
about interacting neutral modes. 

When 8, the relative phase, is equal to IC, figure 3 indicates that the short wave a t  
first decays but, eventually, amplifies a t  a rate approaching that of the most 
favourable case, namely, 0 = 0. This behaviour is completely in accordance with the 
phase plane diagram in figure 1,  corresponding with a trajectory to the right of the 
saddle point, but starting with a negative value of da2/dr. A second, perhaps more 
significant, point of agreement between numerical simulation and resonant 
interaction theory is that the short wave will amplify even if it is not present initially 
(cf. curve in figure 3 originating at the origin) because it is generated by self- 
interaction of the long wave. 

Despite the at least academic interest of these results, the outcome of the 
interacting neutral mode simulations was judged as disappointing because of the 
unimpressive saturation amplitudes. Significant progress was achieved, however, by 
a slight lowering of the Richardson number, as described below. 

3.2. Interaction of a neutral mode with the most ampli$ed wave 
The value J ,  = 0.174 is special in that the second harmonic of the longer neutral 
mode (i.e. a = 0.225) is the fastest growing wave of linearized stability theory. 
Hence, we consider the interaction of these two waves (see figure 2) and expect the 
resonance theory to apply because, for the unstable wave, aci is not large nor is the 
difference between J ,  and its neutral value a t  a = 0.45. 

Again, the initial amplitudes were related by a,(O) = 30a2(0) and, although we do 
not present a plot of al ( t ) ,  we note that some amplification of the ‘neutral’ mode 
occurred. The temporal variation of a2 is shown in figure 4 and the strong dependence 
on the relative phase is evident, as in the just-discussed case of two neutral modes. 
Most noteworthy is the substantial enhancement of the initial amplification rate 
vis-a-vis the single-wave case but, again, the increase in saturation amplitude is 
not commensurate with the factor of five magnification of the initial coefficient of 
amplification. This would seem to indicate that higher-order terms in the amplitude 
evolution equations are stabilizing. To obtain large saturation amplitudes, the most 
favourable configuration appears to be two linearly unstable waves interacting in 
such a way that the longer one essentially dominates, and we now proceed to that 
case. 

3.3. The effect of stratijication on vortex pairing 
Results are presented here concerning interactions between the most unstable wave 
on a linear basis and its subharmonic for the range of Richardson numbers 0.07 < 
J ,  GO.14. The Reynolds number was fixed a t  Re = 200 and we begin with a 
comparison of the evolution a t  J ,  = 0.07 with the corresponding results a t  Re = 50, 
i.e. the case considered by Patnaik et al. 

The isopycnic lines illustrated in figure 5 describe a process of vortex roll-up and 
subsequent coalescence that clearly is similar to that occurring in homogeneous 
mixing layers. The rotation of the two vortex cores prior to coalescence seems to be 
much more energetic a t  Re = 200 than at Re = 50 (cf. figure 16 of Patnaik et al.) and 
the saturation amplitude is greater by 34%. Also of note is a significant presence 
of the short-wave component (a2 0 . 3 5 ~ ~ )  at large times even though visually one 
has the impression that the long wave is totally dominant. Thus, it may be more 
appropriate to describe the process as one of wave interaction instead of employing 
the language of vortex dynamics, despite its descriptive appeal. 
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FIGURE 4. Amplitude evolution of linearly most unstable wave az(t)  with and without its (neutral) 
subharmonic and dependence on initial relative phase 13 in the first case; J ,  = 0.174, Re = 200, 
Pr = 0.72, E = 0.004, a, = 0.225, a, = 0.45 and a,(O) = 30a,(0), except when a,(O) = 0 and a, = 0. 

Additional simulations were made a t  progressively larger Richardson numbers in 
order to assess the effect of stable stratification on the process described above. Some 
of these data are summarized in table 1. From a visual standpoint, a limiting case is 
reached a t  J ,  = 0.14 wherein the left vortex rises only slightly while a corresponding 
slight descent of the right vortex occurs, as seen in figure 6 ( b ) .  None the less, the 
eventual merging of the two leads to a substantial amplification of the ‘billow ’ which 
is apparent in figure 6 (c). In  fact, the maximum amplitude achieved by the long wave 
is on the order of 15 times that of the linearly most unstable wave amplifying 
alone. 

The latter result is the most promising one we have obtained in terms of explaining 
the atmospheric observations of large waves a t  Richardson numbers too large for 
linear instability to be responsible. Moreover, there is the possibility of achieving 
further progress by considering other interactions such as those involving oblique 
waves. Even in the context of two-dimensional perturbations, Corcos & Sherman 
(1984) find that the addition of a second subharmonic leads to further amplification 
in the unstratified case via a second pairing. However, a second subharmonic would 
be linearly damped in our stratified model and, while such a wave triad can occur, 
it  is unlikely that such events arise frequently in practice. 
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I I I 

FIGURE 5. Temporal evolution of isopycnic (constant-density) contours in the case J ,  = 0.07, 
Re = 200, a1 = 0.215, a2 = 0.43: (a) t = 16; ( b )  32; (c) 48. 

4. Concluding remarks 
A principal objective of this investigation was to learn whether a perturbation 

consisting of two resonantly interacting normal modes could produce large-amplitude 
Kelvin-Helmholtz billows at Richardson numbers in the range 0.10 < J ,  < 0.25. 
Linear growth rates, as discussed in 9 1,  are too small at such values of J ,  to explain 
reported observations in the atmosphere of waves with enormous amplitudes. We 
have, in fact, succeeded in demonstrating that resonance does lead to significant 
enhancement of saturation amplitudes in the lower part of this range, say 0.10 < 
J ,  < 0.15. Results obtained a t  larger values of J,, however, were inconclusive because 
those instabilities which amplified most impressively initially often equilibrated 
relatively rapidly. Some further discussion of this is given below, but first, we take 

16 FLM 191 
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Re J o  ~*,x 

50 0.07 24.5 46 
200 0.07 32.8 41.5 
200 0.10 26.1 46.3 
200 0.12 22.4 48.3 
200 0.14 18.4 63.6 

TABLE 1. Maximum amplitude of subharmonic and time at which it was reached for two interacting 
unstable modes. In all of these cases, a,(O) = 2a,(0), 0 = 0 and Pr = 0.72. A 64 x 128 grid was used 
for the Re = 200 simulations. 

t 

I I I I 

I I I I 

FIGURE 6. Temporal evolution of isopycnic contours in the case J ,  = 0.14, Re = 200, a1 = 0.23, 
a2 = 0.46: (a) t = 16; (b) 32; (c) 56. 

up a topic about which more can be said, namely, the dominant wavelength of 
observed disturbances. 

There was a period of time dating from the publication by Woods (1968) of his 
internal wave measurements in the Mediterranean when instabilities observed in 
the atmosphere and oceans were often reported to have a wavelength 7.5 times the 
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thickness of the shear layer in which they propagated. This figure corresponds to the 
fastest growing wave in the three-layer stratified flow model studied by Miles & 
Howard (1964). Our results, however, render any claim about the generality of the 
forementioned figure highly suspect, particularly a t  values of J ,  < 0.15, where modal 
interactions favour the transfer of energy to longer waves. 

Even in the case of a single mode, Patnaik et al. found that long waves at  small 
values of J, ,  despite not having the largest amplification rate initially, eventually 
attained more impressive dimensions than shorter waves. The case J ,  = 0.03, Re = 

50 was selected to illustrate the dependence on a (see their figure 9) with isopycnic 
contours presented a t  a = 0.2, 0.43 and 0.7. These results can be explained, in part, 
by means of the second harmonic resonance theory if we recall that the harmonic of 
the fundamental perturbation will always be generated even if it  is not present 
initially. In the case a = 0.2, the second harmonic of the fundamental mode 
corresponds to a = 0.4, a wavenumber for which aci is large, and consequently a 
strong interaction will ensue once the a = 0.4 mode achieves a finite amplitude. By 
contrast, the second harmonic of the linearly most amplified wave is, at Re = 50, a 
nearly neutral mode; it will always remain small thus precluding an interaction of 
the sort treated in this study. 

Returning now to the question of observed wavenumbers, near the critical value 
of J ,  there may be reason to expect natural instabilities to have the wavenumber of 
the linearly most amplified disturbance. Although in $3.1 and $3.2 we presented 
results indicating a bias toward short waves, the ratio of initial amplitudes of the 
two modes in those cases was specially chosen. The resulting instabilities illustrated 
interesting possibilities, but they may not occur often in the natural environment. 
We have made some additional computations a t  J ,  = 0.217 showing that the growth 
rate of the most amplified disturbance (point F in figure 2) can be increased 
substantially by the presence of a linearly damped subharmonic (point E ) ,  so many 
outcomes are possible depending upon initial conditions. 

Greene & Hooke (1979) report a study of 35 atmospheric events in which they find 
considerable variability of wavelengths but, none the less, there is a tendency toward 
long waves, sometimes 10-20 times the shear-layer thickness. These data probably 
reflect the real situation and we conjecture that nonlinear interactions account for 
some of the variability in wavelengths, as well as the prevalence of long waves. 
However, real atmospheric wind and temperature profiles sometimes differ 
considerably from the models employed in stability calculations and that must also 
be taken into account. 

At several points in this article, we have underlined the importance of finite- 
amplitude methods in the interpretation of numerical experiments and in providing 
guidance as to the choice of potentially interesting initial conditions. No quantitative 
comparisons are reported here, however, because those that we have made indicate 
that neglected higher-order terms in (1.2) are significant. In  particular, the distortion 
of the mean flow appears a t  the next order and this effect, which is stabilizing, is 
clearly important because the mean shear is the energy source permitting both waves 
to amplify in the resonant cases. However, other terms arise a t  the same order and 
their sign cannot be predicted. The relevant amplitude equations to the order 
required have been derived by Usher & Craik (1975) for the case of resonant triads 
in a boundary layer. To formulate an equivalent analysis describing the two-mode 
interaction in a stratified free shear layer would be a formidable undertaking, but 
this is what must be done before a quantitative comparison can be made between 
resonance theory and numerical simulation. 

16-2 
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In  the present investigation, computations were made only for the Harlmboe 
model ; however, the notions of vortex pairing and second harmonic resonance are 
pertinent to other shear flows and certain of these are now discussed. For example, 
a number of papers in meteorological journals have considered the same velocity 
profile as we have, u = tanh y, but with density profiles having non-zero stratification 
outside of the mixing layer. In such cases, a second class of modes (termed 
‘radiating ’) can occur which have eigenfunctions that are oscillatory rather than 
exponentially decaying as IyI + CO, i.e. they have a gravity wave nature. These 
radiating modes typically have much smaller linear growth rates than Kelvin- 
Helmholtz modes a t  the same value of J,. The two studies discussed immediately 
below have an objective that differs from our own-they raise the question of 
whether, as a result of weak nonlinear interactions, radiating modes might play a 
more prominent role than linear theory suggests. 

Davis & Peltier (1979) have considered the interaction between a radiating mode 
and a Kelvin-Helmholtz mode having twice its wavenumber. Their analysis, which 
differs in detail from that of Maslowe (1977), leads none the less to amplitude 
equations analogous to (1.1).  At a Richardson number J ,  = 0.125, these authors find 
that the coefficients of the nonlinear terms have values such that substantial 
amplification of the radiating mode (which is nearly neutral on a linear basis) is 
possible. Fritts (1984), on the other hand, integrated the Boussinesq equations 
numerically and found that the ‘pairing efficiency ’ was greatly reduced, compared 
with the Harlmboe density profile when p = exp (-by) and the long wave was of 
radiating type. The latter study treated only very small Richardson numbers, 
0.025 < J ,  d 0.05, and only 8 Fourier modes were used in the x-direction. Despite the 
limited resolution, one would expect these results to be qualitatively correct for a 
certain period of time given that the value Re = 100 employed in the computations 
was not excessively large. 

Although the density profiles were not the same in these two studies, it  is still 
surprising that such different conclusions were reached, and we offer some 
speculations that may partially explain these differences. First, while the proposal of 
Davis & Peltier is interesting and reasonable, their inviscid analysis ignores critical- 
layer effects which must surely alter the value of the interaction coefficients. It 
should be recalled that the critical-point singularity is stronger in stratified shear 
flows than in the homogeneous case, and careful consideration of the critical layer is 
essential (see e.g. Churilov & Shukhman 1987 or Maslowe 1986). In assessing the 
investigation of Fritts, on the other hand, the question is more one of choosing 
appropriate initial conditions and properly interpreting the results. For example, the 
author’s definition of pairing efficiency is based on the ratio of the energy in the long 
wave to that in the short wave. However, efficient pairing may depend more on 
maximizing the energy transfer from the mean flow to both waves and, as noted in 
$3.3, there may remain a sizeable amount of energy in the short wave even after 
pairing. Clearly, the question of energy transfer to radiating modes is deserving of 
further study, particularly at the larger values of Richardson number most pertinent 
to the atmosphere. 

Finally, we comment briefly on the effect of planetary rotation on vortex pairing 
in homogeneous mixing layers. The unstable, as well as neutral modes, of a tanhy 
shear layer on the ,&plane are highly dispersive. Consequently, the necessary 
conditions for second harmonic resonance are not generally satisfied, and on that 
basis we expect that vortex pairing will diminish with increasing ,8. Laroche (1987) 
has recently investigated this question numerically by int’roducing a white-noise 
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perturbation containing all wavelengths compatible with his computational domain. 
In accordance with the foregoing considerations, he finds that pairing is rapidly 
suppressed even a t  values of /3 small enough to permit significant amplification of 
individual modes. These results will be submitted for publication in the near 
future. 

The authors are indebted to Professors R. W. Metcalfe and S. A. Orszag for their 
expert advice relative to the development and utilization of our numerical code. We 
also thank Professor W. D. Thorpe for authorizing partial support of the McGill 
Computing Centre for the computations reported herein. Finally, we acknowledge 
the research support of the Natural Sciences and Engineering Research Council of 
Canada. 
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